martes, 11 de agosto de 2015

Leyes de la termodinámica

Leyes de la termodinámica

La termodinámica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.
Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.

Primera Ley de la Termodinamica

Esta ley se expresa como:                                             Eint = Q - W                               Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W)                             Notar que el signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.
Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.

Segunda Ley de la Termodinamica

La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.
En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinamica, que tiene dos enunciados equivalentes:
Enunciado de Kelvin - Planck : Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo.
Enunciado de Clausius: Es imposible construir una máquina cíclica cuyo único efecto sea la transferencia continua de energía de un objeto a otro de mayor temperatura sin la entrada de energía por trabajo.


Tercera Ley de la Termodinamica

Esta ley establece que es imposible conseguir el cero absoluto de la temperatura (0 grados Kelvin), cuyo valor es igual - 273.15°C. Alcanzar el cero absoluto de la temperatura también seria una violación a la segunda ley de la termodinámica, puesto que esta expresa que en todamáquina térmica cíclica de calor, durante el proceso, siempre tienen lugar pérdidas de energía calorífica, afectando asi su eficiencia, la cual nunca podrá llegar al 100% de su efectividad. 

Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.

Temperatura

Temperatura


La Temperatura es una propiedad de la materia que está relacionada con la sensación de calor o frío que se siente en contacto con ella. Cuando tocamos un cuerpo que está a menos temperatura que el nuestro sentimos una sensación de frío, y al revés de calor. Sin embargo, aunque tengan una estrecha relación, no debemos confundir la temperatura con el calor.
Cuando dos cuerpos, que se encuentran a distinta temperatura, se ponen en contacto, se produce una transferencia de energía, en forma de calor, desde el cuerpo caliente al frío, esto ocurre hasta que las temperaturas de ambos cuerpos se igualan. En este sentido, la temperatura es un indicador de la dirección que toma la energía en su tránsito de unos cuerpos a otros


La medida
El instrumento utilizado habitualmente para medir la temperatura es el termómetro. Los termómetros de líquido encerrado en vidrio son los más populares; se basan en la propiedad que tiene el mercurio, y otras sustancias (alcohol coloreado, etc.), de dilatarse cuando aumenta la temperatura. El líquido se aloja en una burbuja -bulbo- conectada a un capilar (tubo muy fino). Cuando la temperatura aumenta, el líquido se expande por el capilar, así, pequeñas variaciones de su volumen resultan claramente visibles.

Escalas

  

Calor

Calor


El calor se puede definir como la energía de tránsito desde un objeto con alta temperatura a un objeto con menor temperatura. Un objeto no posee "calor"; el término apropiado para la energía microscópica de un objeto es energía interna. La energía interna puede aumentarse, transfiriéndole energía desde uno con mas alta temperatura (mas caliente) -es lo que propiamente llamamos calentamiento.


Calor y trabajo:

 la energía que tiene un objeto a alta temperatura, no es correcto el uso de la palabra calor para decir que el objeto "posee calor" - es mejor decir que el objeto posee energía interna, como resultado de su movimiento molecular. Es mejor reservar la palabra calor para describir el proceso de transferencia de energía, desde un objeto a alta temperatura hacia otro a mas baja temperatura. Seguramente podemos tomar un objeto con baja energía interna y elevarla a una energía interna mas alta por medio de su calentamiento. Pero tambien podemos aumentar su energía interna realizando trabajo sobre él, y como la energía interna de un objeto a alta temperatura reside en el movimiento aleatorio de sus moléculas, no podemos decir que mecanismo se usó para proporcionarle esa energía.